Safe Subsea Lithium Ion Batteries
for Subsea ROVs

Leon Adams, David White
Southwest Electronic Energy Group

• Subsea Battery Requirements
• WHOI Nereid HT and Under Ice Light-Tethered ROV
 • Battery Requirements
 • Pressure Tolerant Subsea Battery Solution
 • Battery Module with BMS
 • Testing and Certifications
 • WHOI Nereid UI Application Example
• Work Class ROV Support Battery Scenarios
COPYRIGHT USAGE GUIDELINES

THESE COPYRIGHT USAGE GUIDELINES (“the Guidelines”) apply to the use by __________________ (“You” or “Company”) of copyrighted materials of Southwest Electronic Energy Group (“SWE”), specifically the presentation titled [Lithium Battery Pack Safety] (the “Materials”). A copy of the Materials is attached.

By using the Materials, Company signifies its acceptance of and agreement to follow the Guidelines.

1. Permitted Uses. SWE grants Company non-exclusive, non-transferable, revocable, limited permission to use the Materials solely for Company’s internal, noncommercial use. SWE’s authorization includes the right to copy, edit, modify and make derivative works from the Materials, provided that use of the Materials remains internal to Company and follows the Guidelines. You may not republish or distribute the Materials, or any portion, outside of Company or its affiliated companies. Copyright in the Materials remains with SWE, and nothing in the Guidelines shall be construed to confer any rights to Company in the Materials other than as specifically stated.

You may not use the Materials in any manner that may give a false or misleading impression or statement, or misrepresent your relationship with SWE. The Materials may not be used in a manner that implies or suggests that SWE approves or endorses Company or Your goods and services (in all cases, except as SWE may have agreed separately with You in writing), or otherwise certifies the Materials for use.

2. References to SWE. If Company uses the complete, unaltered Materials as provided by SWE, You should include the copyright notices, trademarks, and names of SWE as may appear in the Materials. In the event that You make any modifications to the Materials or use only a portion of the Materials, You must remove any and all references to SWE contained in the revised or partial Materials, including the SWE trademarks (e.g., logo) name, and copyright notice.

The Guidelines do not authorize You to use SWE’s copyrights, trademarks and/or logos in any manner other than as specifically permitted in the Guidelines. Any use of the Materials not expressly permitted by the Guidelines may violate copyright, trademark, and other laws.

3. NO WARRANTY. THE MATERIALS ARE PROVIDED ”AS IS,” AND SWE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE MATERIALS OR THEIR CONTENTS. SWE DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES OF ANY KIND, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. Without limitation, SWE makes no representations or warranties about the following:

a. The accuracy, reliability, completeness, currentness, or timeliness of the Materials. SWE makes no claims, promises or guarantees about the information contained in the Materials. SWE has no obligation to update the Materials or any content contained therein. THE MATERIALS ARE NOT A CERTIFIED TRAINING PROGRAM AND ARE PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

b. The accuracy or reliability of the Materials with respect to compliance with any government regulations, rules or laws.

4. LIMITATION OF LIABILITY. Neither SWE nor any of its officers, directors, employees, or other representatives will be liable for any damages, special, consequential or otherwise, arising out of or in connection with the use of or reliance on the Materials or any information contained therein. This limitation of liability is comprehensive and applies to all damages of any kind, including, without limitation, loss of data, income or profit, loss of or damage to property, wrongful death/personal injury, and claims of third parties. SWE, its officers, directors, employees, or other representatives are not liable for any personal injury, including death, caused by Your use of or reliance on the Materials or information contained therein.

5. Miscellaneous. If you do not follow the Guidelines, your permission to use the Materials automatically terminates and you must immediately cease use of the Materials. SWE reserves the right to revise, update, or cease use or distribution of the Materials or the Guidelines at any time. This is the entire understanding between You and SWE about the Materials. The warranty and limitation of liability set forth in the Guidelines shall continue in full force and effect even after permission to use the Materials has terminated or if the Guidelines are no longer in effect.
Subsea Battery Requirements

<table>
<thead>
<tr>
<th>App</th>
<th>Need</th>
</tr>
</thead>
</table>
| Deep-Sea Oil & Gas Work Over Controls, Chokes, MWCS | • Electronic control
• Electrical drives
• Primary and/or back-up
• More precision, feedback
• Long life sensors/monitors |
| MUVs (Manned Underwater Vehicles) | • Safe operation
• Deeper dives
• Longer observation times
• Lighter weight |
| ROVs (Remotely Operated Underwater Vehicles - Hybrid & Data-tethered) | • Electric powered motors, manipulators
• High Voltage, High Power
• Light weight, Pressure |
| AUVs (Autonomous Underwater Vehicles) | • Longer survey runs
• Deeper dives
• Lighter weight |

Subsea needs batteries with:

• Safety first
• More capacity
• Higher Power
• Smaller size
• Less Weight
• Longer life
• High Reliability
Hybrid Tethering

New Insights

Light-Fiber Tether
Practically unlimited bandwidth with 20 km horizontal standoff.

Free-Space Optical
Through-water optical communications at ranges up to 100+ meters for complete freedom from a tether.

Small Footprint Tether
Light conventional tether (CTD wire) capable of trickle-charging with minimal on-board infrastructure.

Woods Hole Oceanographic Institution
Nereid HT

What

- Hybrid Light Work class ROV
- 3 modes of operation (tether)
- Re-Usable tether - .322 inch dia with lift-tether
- Immersive imaging
- Re-chargeable Lithium Ion
- Manipulation and Sampling (7 DOF master/slave)
- 2500 meters depth (extends to 5,000m)

When

- At Sea test March '14 (New Zealand)
 - Successful demo of ROV ops from non-DP platform with small winch
 - Uncovered issues with lifting tether requiring a revision, presently in work
 - Second trial awaiting approval and schedule
 - Commercial partnering/licensing with WHOI of interest?
WHOI Nereid Under Ice
Light-Tethered ROV : Innovation

Capability
- Manipulation
- Inspection
- Mapping/Survey

Horizontal Range from Launch Point
- 100 m
- 1 km
- 10 km
- 100 km

Conventional ROVs
- SIR*
- SCINI
- MSLED*
- Nereid UI
- Multi-Node AUV Systems*
- Autosub
- Gliders
WHOI Nereid Under Ice

Light-Tethered ROV: Innovation

Conventional Arctic ROV
- **ROV Footprint of Operations**
 - Small (~500 m)
 - Under Ship moving with ice
- **Power Source**
 - Tether Umbilical

Light-Tethered Arctic ROV
- **ROV Footprint of Operations**
 - Large (~20,000 m)
 - 40X Range
 - Decoupled from Ship moving with ice
- **Power Source**
 - Onboard SWE SeaSafe Batteries

Challenge:
- Present vehicles ROVs are constrained by their tethers during ice-bound operations
 - Tethers vulnerable to ice damage
 - Vehicle systems not resistant to tether connection damage or loss (e.g., no “come home” function)
 - Surface ships cannot hold position thus limiting ability to work predictably in specific seabed locations with vehicles
 - Through-ice deployment concepts immature

Solution:
- Recent advances in ROV tethering technologies now enable real-time control over extended distances thus freeing the vehicle from restrictions imposed by surface ice cover
- **Steel Armored Cable**
- **Depressor/Garage**
- Light Fiber-Optic Tether
- **Nereid UI Footprint of Operations**: Large (~20 km) and Decoupled From Ship
WHOI Nereid Under Ice Light Tethered ROV

WHOI Battery Requirement

• Safe, Reliable Operation
• 2000 m depth
• ~ 88 volts
• <= 40 Amps Continuous
• 100 recharge cycles
• -20°C to +50°C temperature range
• > 15 kWh in 36” x 24” x 12”
• 12 hours recharge time
• Protection and balancing internal
• Diagnostic information logged externally

SWE SeaSafe Li Ion Delivers

• BMS for Safety, Reliability
• <= 6000 m depth
• 29V X 3S = 87V nom, 96Vmax
• 40 Amps Continuous
• 1000+ recharge cycles
• -40°C to +85°C discharge temperature range
• 22 kWh in <= 36” x 24” x 12”
• 3S x 9P @ 90% SOC
• < 12 hours recharge time
• SWE BMS: Internal protection and balancing
• SWE BMS: RS485 Modbus access to battery status on demand, log external
Battery Capacity = \textit{Watt Hours} or \textit{Amp Hours} @ Voltage

- **High**
 - Volts
 - Watts
 - Current

- **Low**
 - Volts
 - Watts
 - Current

- **Nereid UI**
 - ~ 88 Volts, < 40 Amps
 - ~ 15 kWh
Pressure Tolerant Lithium Ion Polymer Ideal for Subsea (vs Lead Acid)

4X More Energy Density

<table>
<thead>
<tr>
<th></th>
<th>SLA</th>
<th>Li Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>¼</td>
<td>¼</td>
</tr>
<tr>
<td>Size</td>
<td>¼</td>
<td></td>
</tr>
<tr>
<td>Wh/kg</td>
<td>~ 40</td>
<td>~ 180</td>
</tr>
<tr>
<td>Wh/L</td>
<td>~ 70</td>
<td>~ 300</td>
</tr>
</tbody>
</table>

6X Superior Low Temp Operation

1.5X x 4X = 6X @ 0 C

8X Longer Cycle Life

<table>
<thead>
<tr>
<th></th>
<th>SLA</th>
<th>Li Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles</td>
<td>~ 600</td>
<td>~ 4800</td>
</tr>
</tbody>
</table>

Breakthrough Safety/Intelligence

<table>
<thead>
<tr>
<th></th>
<th>SLA</th>
<th>SWE BMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgas During Charge</td>
<td>Yes</td>
<td>✓ No</td>
</tr>
<tr>
<td>Smart/Auto Battery Management</td>
<td>No</td>
<td>✓ Yes</td>
</tr>
<tr>
<td>Health/Status Reporting</td>
<td>No</td>
<td>✓ Yes</td>
</tr>
<tr>
<td>Durability</td>
<td>No</td>
<td>✓ Yes</td>
</tr>
</tbody>
</table>

Source: Dow-Kelco (Lithium Polymer Cells) PowerSpin (SLA/AGM)
Easy to Integrate Smart LiIon Battery Modules

SMART MODULE SPECS

<table>
<thead>
<tr>
<th></th>
<th>29V</th>
<th>24V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells in series</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Dimensions (in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>W</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>L</td>
<td>9.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Module (air)</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Total Module (sea)</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>nom</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>max</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>Current (A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Dschg (continuous)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Max Dschg (30s pulse)</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Max Dschg (1s pulse)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Power (W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dschg (nom)</td>
<td>1160</td>
<td>1015</td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ah</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>
• 7 or 8 ea, 3.6v Lithium Ion 31 Ah Lithium Polymer Cells connected in series
• Safe, Autonomous Battery Management System (BMS)
• Power Booster Boards
• Potting Material: Thermally conductive, flame retardant, Shock & Vibration resistant polyurethane
• Fiberglass box
• Integrated Internal Safety Fuses as backup to BMS

Charge/Discharge Connector: 2 pin Anderson SB50
Comm Connector: 8 pin Molex
Modular, Distributed BMS Suite of SAFETY and Reliability Features

SWE distributed Battery Management System (BMS) builds advanced SAFETY and reliability features into each autonomous smart module battery

1. Safety features configurable to your mission/application
 • Over and under voltage detection/prevention
 • Excessive charge & discharge detection/prevention
 • Charge temperature protection
 • Discharge temperature protection
 • Short circuit detection and prevention
 • High current pulse discharge allowance yet short circuit cut-off

2. Autonomous control of charge level within each battery module

3. Three types of balancing (including module inter-cell and inter-module)

4. Thermal control of all cells and safety shut-off

5. Redundant short circuit fuse protection

6. Load voltage, rate of current, and remaining battery capacity gauging

7. Patented Algorithm to assess State of Health and preventative maintenance
SeaSafe Observer

Battery State of Health & State of Charge Status

- Read Post Mission or Run Time
 - RS485 Modbus
- Easy to use PC Graphical User Interface
 - Or command driven comm
- For Information only.
 - Not needed for battery operation.
Extensive SeaSafe Testing

• Exhaustive functional testing over 6+ years
• External direct shorts tests: module automatically shuts off safely for currents in excess of 90 amps
• 10+ separate pressure tests over years of testing.
 – Shown: SeaSafe 316 stainless steel case with four SeaSafe battery modules and one PII being lowered into the 30 inch hyperbaric chamber at the Southwest Research Institute
 – 18 complete pressure cycles up to 10,000 psi and back down on a module while performing live charge and discharge cycles
 • 10,000 psi provides for 6000+ meter sea depth
• Design of Subsea Equipment standard compliant (ISO 13628-6:2006) to Battery relevant tests (shock & vibration)
• ISO9001-2008 Quality Compliant Manufacturing
SeaSafe UN DOT Certification

International Shipping Safety Certified - UN Manual of Test and Criteria Section 38.3

RESULT SUMMARY: The tested samples met the test requirements. See below breakout for tests performed.

<table>
<thead>
<tr>
<th>Specification Section</th>
<th>Test Description</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Altitude Simulation</td>
<td>Conforms</td>
</tr>
<tr>
<td>T2</td>
<td>Thermal Test</td>
<td>Conforms</td>
</tr>
<tr>
<td>T3</td>
<td>Vibration</td>
<td>Conforms</td>
</tr>
<tr>
<td>T4</td>
<td>Shock</td>
<td>Conforms</td>
</tr>
<tr>
<td>T5</td>
<td>External Short Circuit</td>
<td>Conforms</td>
</tr>
<tr>
<td>T7</td>
<td>Overcharge</td>
<td>Conforms</td>
</tr>
</tbody>
</table>
Lithium Ion Subsea Battery Deployed in WHOI Hybrid ROVs

- Pressure Tolerant, Autonomous Smart Module Batteries w/RS-485 Modbus Com Port
- Std 29V Module w/8 Series, 31Ah Li-Polymer Cells
- Best Practice Battery Management System Built-in

29.6 V Smart Battery Module Internal View

X 3 in Series = 89 V
X 2 in Parallel = 56 Ah
Total = ~ 5 KWh

WHOI Pressure Equalizing Battery Case

Per Battery Case with room for more
SeaSafe Batteries in Nereid-UI

Battery System

Completed modules #1, #2 installed in nUI.
- 10 kW max power with 3 modules
- Design tested to 6000 m
- Monitoring/interface s/w completed
- 18 kWhr total capacity (3 modules)
SeaSafe Batteries in Nereid-UI

<table>
<thead>
<tr>
<th>Flotation:</th>
<th>Doppler Velocity Logs Two TRDI 300 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic Telemetry:</td>
<td>WHOI CMT 2500 meter</td>
</tr>
<tr>
<td>Thrusters:</td>
<td>WHOI design</td>
</tr>
<tr>
<td></td>
<td>1200 Watts x 8</td>
</tr>
</tbody>
</table>

Battery module (1/3):
- SWE modules in WHOI enclosure

Vehicle Frame:
- Welded Aluminum

nUI
- 1800 kg
- 1.8 m x 1.8 m x 3 m

Science Sensing:
- Kongsberg PTZ with DSPL aux. DSPL lighting
- Sonars: Blueview, Reson
- Chemical sensing suite notional
Dive Statistics

- Four to six dives anticipated
- Attempted five, four resulted in successful separation
- Dives nui003, nui004
 - science-focused
 - ~4 km under-ice
Work Class ROV Support Battery Scenario

Electric Motor for Hydraulic Pump

- High Power Surge
 - \(>> 100,000\) Watts
- Short Duration: Minutes
- \(600++\) Volts DC Voltage
- Inverted to A/C?
- \(200++\) Amps DC Current
Work Class ROV Support Battery Scenario

Watts
- **High**
- **Low**

Volts
- **Short**
- **Long**

Amps
- **Short**
- **Long**

Power
- **Time**
- **Hours**

Sensors, Monitors, Meters, etc.
- **Very Low Power**
- **Very Long Duration: Months+**
- **24 Volts DC Voltage**
- **< 0.1 Amps DC Current**

Time
- **Watts**
- **Volts**
- **Amps**
Thanks!

Acknowledgements

- Woods Hole Oceanographic Institution
 - Andrew D. Bowen abowen@whoi.edu
 - Daniel Gomez-Ibanez dgi@whoi.edu

ABOUT SWE
www.swe.com

- Since 1964 - Quality supplier to Oil and Gas
- 20+ years- Ruggedized Lithium battery experience
- 15+ years - Lithium Ion battery experience
 - 10+ patents - Li Ion Battery Management
- 300+ customers: Most top Oil & Gas Service, Drilling, and Production Companies
- 55,000 sq ft - Battery systems R&D and ISO 9001/2008 certified manufacturing in Houston